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What’s on the (far) horizon? q ¥

Modelling for exploring pathways to desired outcomes, but:
* Not one model, but multiple

* Real data fed in

* Ways to deal with parametric AND structural uncertainty
* Behaviourally and structurally scrutinised

* Social science informed and informing
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What this research is (and isn’t) (proposal)
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- We need to talk about the loop (inverse - /

modelling) and the notion of structure (building
blocks). This talk is a methodological example!
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Inverse Modelling

* “Inverse Generative Social Science”
* Generative social science (epstein, 1999
* Inversion (epstein, 2023)

* Inverse modelling uensena cnappin, 2017 ONlY the modelling part
* So, multiple forward problem for macro-pattern matching

* Teething problems:
* Overfitting (genetic algorithms, lack of large/diverse data)
* No stochasticity or chaos control
e Conceptual, little steps towards generative-ness

- Aim: Inverse modelling and structural changes
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Building Blocks: - *\“

* “submodels describing processes
that are releva Nt for a broad We can build all types of things (houses & not houses)

range of ABM in a certain N
b
En‘n ‘m- =

application domain” (rimmetat, 2022
But also houses that just don’t make sense ...

* More transparency, scrutiny, &
reproducibility of models/results

* Also: Many other model
candidates are possible

- Aim: Can we do pattern ' a . .
matching structurally? 3 N - a
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What this research is (and isn’t) (to-do list)
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What this research is (and isn’t) (meta)

* Problems with inverse modelling:
structure, initial conditions, chaos,
growth-pattern identification

* But: Multiple models instead of one

* “That’s mindless fitting!”

* Yes — but it doesn’t end there!
e Systematically question assumptions

structurally

» Systematically test robustness of

implementation of theories

* Just as modelling, this is a participatory

process, too
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Option Space

Sanity check

Candidate Model

Running them

Sane, plausible model

Analysis

(Hopefully) useful model
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Example Setting _ *k‘.

e Target is list of fictious functions, e.g. ['action8', 'action7’, 'action10/,
'action9’, 'action8', 'action2’, 'action10’, 'action1']

* Initialise population with random sequence, mutate (genetically
and/or through learning model) to fit target best

* Evaluate candidates’ score by hamming distance, feedback as training

(Learning) Matching

Mutator . Function
Population

Pool

e Later, with ABM...
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Data Analysis (I of Il)

The dataset selected has this following densities
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- Algorithm prefers to cluster by fitness, not by
list similarity (Hamming) distance, so let’s do
pattern mining ...
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e.g. ['action8', 'action?’, 'action10’, 'action9’, 'action8’]

Data Analysis (Il of Il)

Good outliers are these:

* Go through all good and bad cupport ftemsets

length
. . 52 @.873333 (action?, actiond, actionle) 3
candidates and mine for 3 059600 (sctions, actions, actionis) 3
1 H 58 @.925333 (action?, action8, actionle) 3
patterns In the ||Sts 78 @.84%333 (action7, actiond, action8) 3

* Take significant outliers, get Bad outliers are these
. . . support itemsets length
SomEth|ng like this 9 20 ©.573333 (actiond4, actionle) 2
23 @.557333 (action7, actionl®) 2
24 9.636088 (actionB8, actionl®@) 2
41 @.4873332 (action7, actiond) 2
o« . . . 42 @.576088 (actiond, action8) 2
* This is the latest point (imo) s1 o.558067 (action7, actiong) .
h | h | 57  ©.286667 (action3, actionB, actionle) 3
W ere to Consu t Ot er peop e 71 @.413322 (action?, actiond, actionl@) 3
. . . . ' 72 ©.47608@ (actiond, actionB, actionle) 3
(SOCIal SCIentIStS) from OUtSIde' 78 ©.474667 (action?, actionB, actionle) 3
9%  @.414657 (action7, actiond4, action8) 3
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Conclusions

* Methodologically possible to
model structurally and inversely ..

; Sanity I
if not any? turtles [ stop ]

® MethOdOIOgica”y pOSSibIe to if not any? wolves and count sheep > max-sheep [ user-message “"The sheep have i

; This can be wvaried:

extract patterns from many O e ey shees
simulation runs eap vat onss
sheep-maybe-die
o o sheep-reproduce

* Not without requirements - eivesove

. . penalty-wolves
Thus, a (timid) step towards the wolfcatch-sheey
horizon ‘;ii:‘f;;;ii”d““
Liiinity II

* Further steps: ABM integration -
(paper 1, solar panel adoption),

: %
uncertainty & chaos (paper 2) FUDelft | TP\ EnergyTransition Lab
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