

Session_2_Presentation_3

Integrated Energy Systems Modeling Framework i7-AnyEnergy

Peter Bazan, Reinhard German

ABM4Energy, Freiburg, 21.03.2024

- 01 Cellular Approach
- 02 i7-AnyEnergy Framework
- 03 Simulation Model for the Hydrogen Potential in the European Metropolitan Region of Nuremberg
- 04 Conclusion

Integrated Energy Systems Modeling Framework i7-AnyEnergy

Peter Bazan, Reinhard German

21. March 2024

Related work

General concept

- e.g., from German Association for Electrical, Electronic & Information Technologies (VDE), German project C/Sells
- similarly: local energy management, energy communities, energy hubs, P2P energy trading, fractal-structured energy systems, …

Algorithms

- Market mechanism for load balancing in fractal-structured smart micro grid models (hierarchies)
 Apperley, M.: Modelling fractal-structured smart microgrids: Exploring signals and protocols. In: Sultan, M.N..V. (ed.) Proceedings of ENERGY 2019, The Ninth International Conference on Smart Grids, Green Communications and IT Energyaware Technologies. p. 13–17. IARIA (2019)
- Recursive algorithm for the matching of supply and demand in a power grid with an acyclic connected graph structure (hierarchies)

Hekkelman, B., La Poutr'e, H.: Fairness in power flow network congestion management with outer matching and principal notions of fair division. In: Proceedings of the Eleventh ACM International Conference on Future Energy Systems. p. 106–115. e-Energy '20, Association for Computing Machinery, New York, NY, USA (Jun 2020). https://doi.org/10.1145/3396851.3397701

- Distributed algorithm for the demand-side management in smart grids with cyclic connected graph structures (neighborhoods)
 Dong, Y., Zhao, T., Ding, Z.: Demand-side management using a distributed initialisation-free optimisation in a smart grid. IET Renewable
 Power Generation 13(9), 1533–1543 (Apr 2019). https://doi.org/https://doi.org/10.1049/ietrpg.2018.5858
- Recursive algorithm for graph structures with hierarchies and neighborhoods (developed with i7-AnyEnergy framework)
 Dengler, G., Bazan, P. & German, R. Simulation of a Cellular Energy System including hierarchies and neighborhoods. Energy
 Inform 5 (Suppl 4), 51 (2022). https://doi.org/10.1186/s42162-022-00243-2

Integrated Energy Systems Modeling Framework i7-AnyEnergy

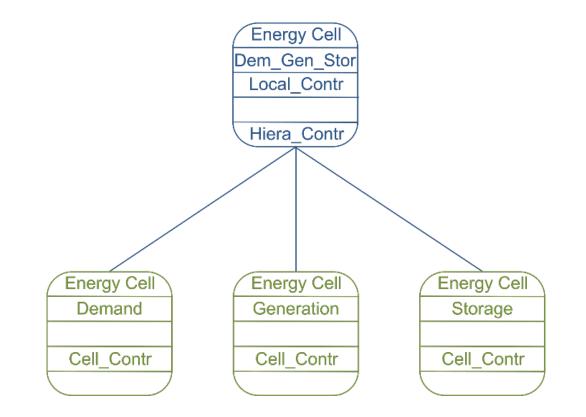
Cellular Approach

Energy cell

atomic energy cell (green)

for demand, generation, storage ...
 (with cell controller)

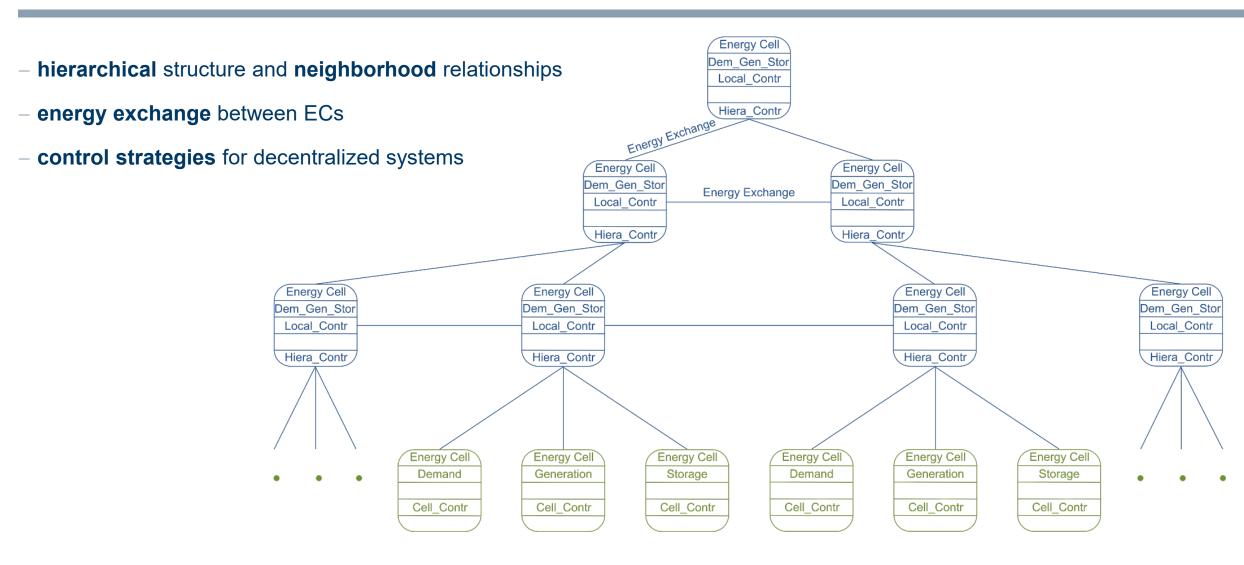
aggregated energy cell (blue)


 for combining atomic and aggregated ECs

hierarchical controller

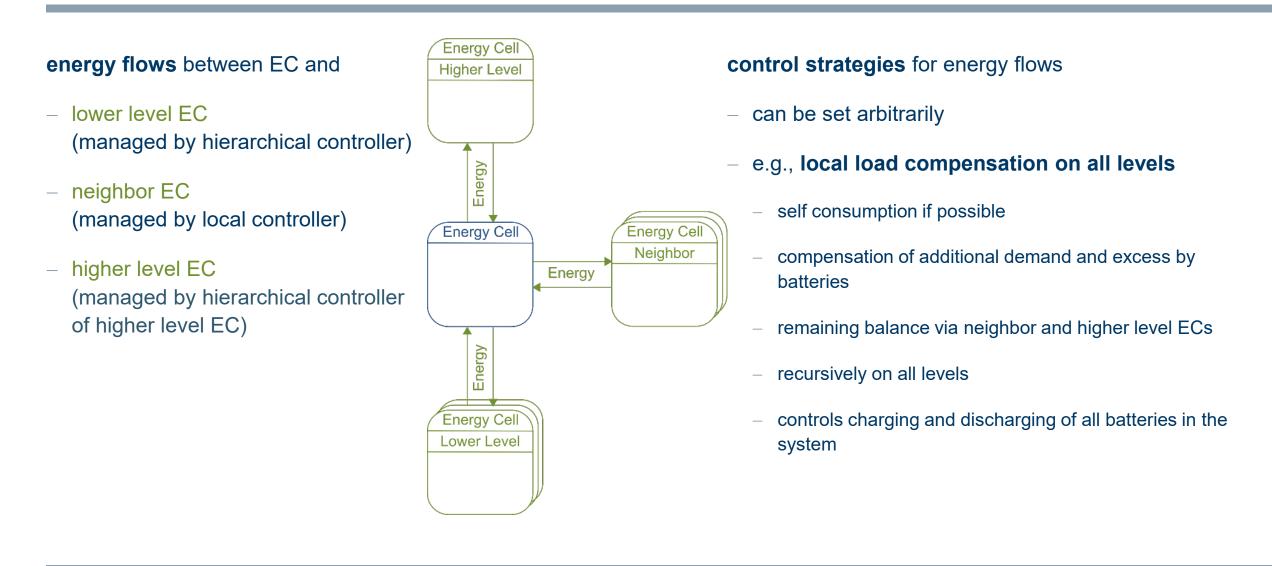
for energy exchange with **subordinated** ECs (with a selected strategy)

local controller


 for energy exchange with **neighbor** ECs (with a selected strategy)

5

Hierarchies and neighborhoods



Integrated Energy Systems Modeling Framework i7-AnyEnergy

Peter Bazan, Reinhard German

Recursive, decentralized control strategy

Generalization for integrated energy systems

Energy carrier of a cell can be of type

- electricity
- heat
- natural gas, hydrogen

Demand, generation and storage cells can also be used for

- cost flows
- material flows

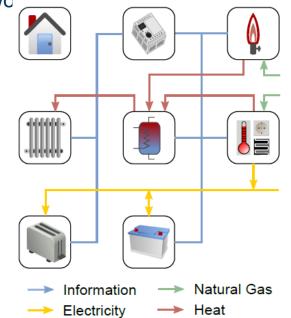
Hierarchical structures can be the

- technical perspective
- political perspective
- stakeholder perspective

Integrated energy systems

- multiple cell types
- multiple hierarchical structures
- additional sub models for
 - transport

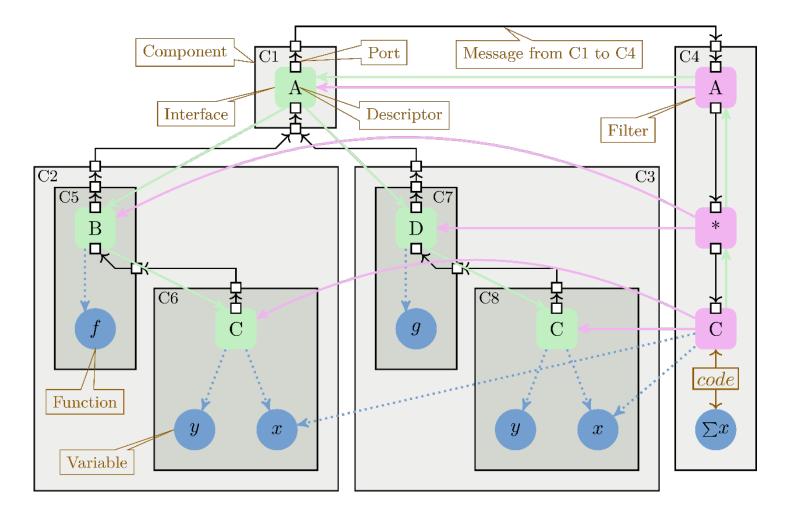
- . . .


- production processes

Concepts

R. German, P. Bazan, "Rapid Prototyping with i7-AnyEnergy and Detailed Co-Simulation with SGsim", 7th D-A-CH+ Energy Informatics Conference, Oldenburg, 2018.

- reusable and replaceable **agents** (demand, generation, PV, battery, heat, control, networks)
- multiple energy carriers (electricity, heat, hydrogen, ...)
- technical and economic analyses
- **interface objects** for flexible and efficient access to all model parts
- cellular approach with hierarchies and neighborhoods
- configuration with drag and drop, text files or databases
- visualization and animation
- open source
 - \rightarrow https://github.com/cs7org/i7-AnyEnergy



Interface/filter concept

R. German, P. Bazan, "Rapid Prototyping with i7-AnyEnergy and Detailed Co-Simulation with SGsim", 7th D-A-CH+ Energy Informatics Conference, Oldenburg, 2018.

- interfaces for variables and functions, can be aggregated
- other components use filters for access, can also be aggregated
- easy rearrangement of components
- established automatically at initialization time
- efficient direct access at run-time, modeler defined code
- configuration and transformation of model structure

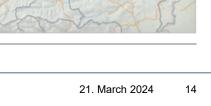
Agent-Based Modeling architecture

R. German, P. Bazan, "Rapid Prototyping with i7-AnyEnergy and Detailed Co-Simulation with SGsim", 7th D-A-CH+ Energy Informatics Conference, Oldenburg, 2018.

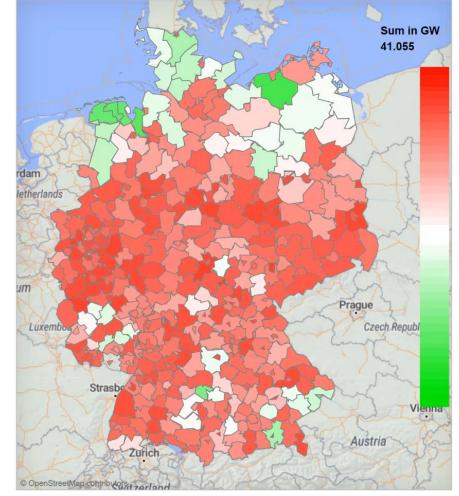
 AnyLogic agents, ports, state charts, system dynamics, Java, component-based 	Graphical User In	terface		
 component-based agents are connected through ports interfaces interface objects 	Simulation Model			
 filters access objects 	Complex Compor	nent		
 infrastructure registration, read/write, configuration files, timer, traces, optimization 	Interface/Filter			
- conventions	Java	System Dynamics	Statechart	Component
 naming, energy flows, … – energy components demand, PV, battery, … → Rapid modeling of energy systems 	<pre>double charge = 0.0; for(double p: power) { charge += p; }</pre>		off_fc on_reformer	

AnyLogic Personal Learning Edition [PERSONAL LEARNING USE ONLY]

File Edit View Draw Model Tools Help


國 ▼ 總國 圖 (学 句) 水画 画 案 圖 Ø ▼ ■ | ※ (3) 4 100% | > 乌 | ● ▼ | 単 四 马 ▼ | み Log in ▼

🕆 Projects 🔅 🛱 Palette 👘 🗖	ā Main ≋	- 0	Properties 12	
✓ ▲ Model* ∧		> ^		
> 0 Main			ito elements are selected	100
Sim_DragAndDrop: Main				0
A Run Configuration: Main				
Database				
✓ ▲ >i7_AC_L5_E_Collection 231 6/27/23 7:01 PM prbazar				
> 0 I7_AC_L5_E_Coll_Configure				
> 0 I7_AC_L5_E_Coll_Energy				
> 6 I7_AC_L5_E_Coll_Sequencer				
> 0 I7_AC_L5_E_Coll_Start				
> 0 I7_AC_L5_E_Coll_Statistic				
> 0 17_AC_L5_E_Co				
A Run Configuration: 17_AC_L5_E_Coll_Start				
> 🤋 Database				
✓ ▲ >i7_AC_L5_Electricity 230 6/27/23 6:25 PM prbazan				
> 0 17_AC_L5_E_EC				
I7_AC_L5_E_GUI_Statistic				
> 6 I7_AC_L5_E_Output_Statistic				
I7_AC_L5_E_Sequencer				
> 0 I7_AC_L5_E_Statistic_EC				
> 0 I7_AC_L5_E_Unstable				
I7_AC L5 E Unstable1				
Run Configuration: I7_AC_L5_E_EC				
Database				
✓ ▲ >i7_AC_L5_E_Demo 231 6/27/23 7:01 PM prbazan				
I7_AC_L5_E_Demo_Configure				
I7_AC_L5_E_Demo_DragAndDrop				
0 17_AC_L5_E_Demo_EC				
8 I7_AC_L5_E_Demo_Electricity				
> 0 I7_AC_L5_E_Demo_Flat				
Sim_DragAndDrop: I7_AC_L5_E_Demo_DragAndDr				
Sim_EC: 17_AC_L5_E_Demo_EC				
Sim_Electricity: I7_AC_L5_E_Demo_Electricity				
Sim_Flat_Database: I7_AC_L5_E_Demo_Flat				
Sim_Flat_File: 17_AC_L5_E_Demo_Flat				
Run Configuration: 17_AC_L5_E_Demo_EC				
> 🤋 Database				
> 🔤 Resources				
✓ ▲ >i7_AC_L2_Electricity 227 6/1/23 10:03 PM prbazan				
I7_AC_L2_E_Storage				
@ I7_AC_L2_E_StorageLine				
Run Configuration: I7_AC_L2_E_Storage				
Database				
> 17_AC_L2_Demo 230 6/27/23 6:25 PM prbazan				
> 🖪 >i7_AC_L1_Test_Comp 227 6/1/23 10:03 PM prbazan				
> A >i7_AC_L1_Interface 227 6/1/23 10:03 PM prbazan				
> 3 >i7_AC_L1_Demo 230 6/27/23 6:25 PM prbazan				
✓ ▲ >i7_AC_L1_Contr 230 6/27/23 6:25 PM prbazan				
> 0 I7_AC_L1_Contr_E_Greedy		Levels a 🗸		\sim
< >>	ć	>	4	>
0 items selected	日間 スタウキタ	1meters = 10px, X=-17, Y=479		


🖷 🔎 🛱 🤌 🕐 🔚 🚍 🔚 🔚 🖼 🖙 📓 🗇 🖉 🤹 🖉 🍕 🦑 📰 🕲 🥠 🞉 🧠 🥒 🔚 🚍 😼 🦃 🚔 💭 🎭 🗐 🎬 (= 😓 🖓 🗛 🔤 🔤 (= = 😓 🗛 🗛 💁 💁 💁 🖾 😒 🔊 🖧 🚺 🔹 24°C - ^ 4) 2035 04.07.2023 🖏

Applications

- Houses, neighborhoods: house with PV, battery, heating; virtual battery storage with primary control power (SWARM, N-ERGIE, Caterva, Siemens); flexibility with Blockchain (ZD.B); thermal storage for renewable energy (EnCN)
- Regional and national level: Germany's electrical energy system (KOSiNeK, BMWi); sector coupling of electricity, gas, heat, mobility in Bayreuth (ESM-Regio, BMWK); Monash Microgrid (Monash Univ.); hydrogen potential in the EMN (City of Nuremberg), transition paths for the EMN energy system (Climate Protection 2030+, BMBF)
- Mobility related: system services with electric fleets (ZD.B); e-bus port (N-Ergie, VAG); mobility on demand with robot taxis (Audi); multimodal employee mobility at Munich Airport (Munich Airport, Fraunhofer IIS); alternative drives for heavy commercial vehicles
- Other: Cement plant with renewables (ThyssenKrupp); data centers (noris networks); battery technologies (Siemens), real-time communication in smart grids (with Univ. Oldenburg, DFG); National Research Data Infrastructure for Energy (NFDI4Energy, DFG)

🚺 🔊 🕐 Virtual 👰 🌚

Peter Bazan, Reinhard German

Simulation Model for the Hydrogen Potential in the European Metropolitan Region of Nuremberg (EMN)

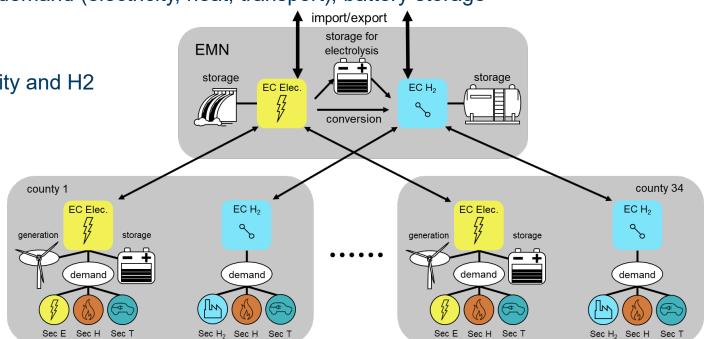
Study commissioned by the city of Nuremberg

https://www.encn.de/nachricht/encn-stellt-wasserstoffstudie-fuer-die-metropolregion-vor

Integrated Energy Systems Modeling Framework i7-AnyEnergy

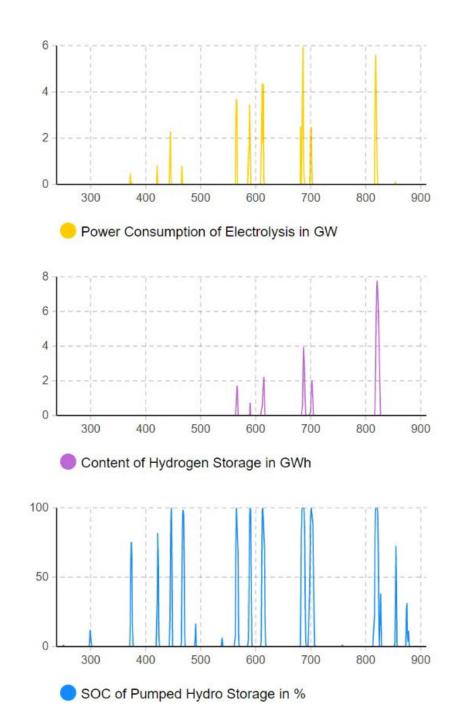
Peter Bazan, Reinhard German

Model structure


FAU

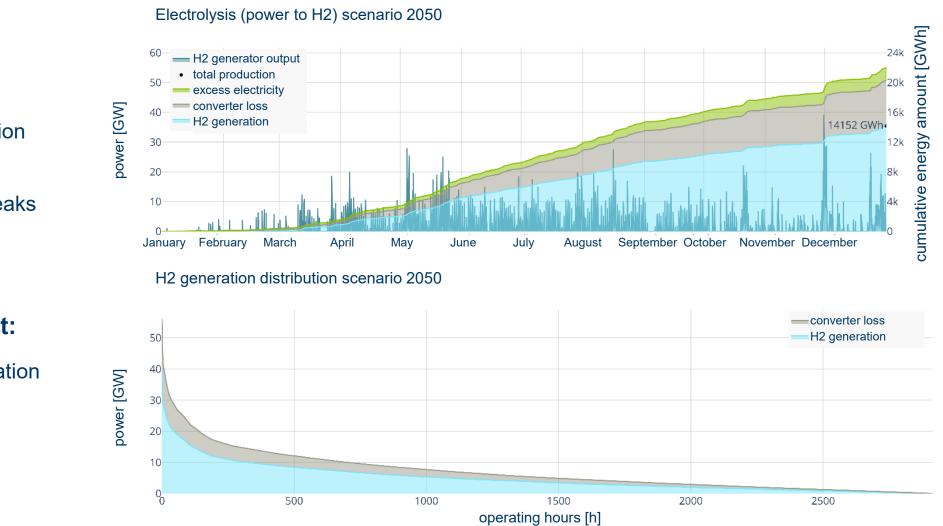
- 34 counties as energy cells


- energy carrier electricity: renewable generation, demand (electricity, heat, transport), battery storage
- energy carrier H2: demand (H2, heat, transport)
- unlimited transport capacities in EMN for electricity and H2


– EMN as energy cells

- pumped storage, H2 storage (unlimited)
- Electrolysis to convert electricity → H2 (renewable surplus after filling all electrical storage units)

- Scenario 3 (optimistic) from EMN's Energy Utilization Plan (ENP): Use all expansion potential



Hydrogen Potential in EMN

Results (scenario 2050)

power [GW]

Electrolysis:

- annual H2 production approx. 14 TWh
- very high power peaks

Distribution of generation output:

- only 1/3 year operation

Hydrogen Potential in EMN

Results (scenario 2050)

Expansion of renewables

- annual H2 production approx. 14 TWh, demand approx. 7 TWh, overall H2 self-sufficiency possible (ideal assumptions)
- high peak performance at low utilization: unrealistic system dimensioning
- even if there is an annual electricity surplus (approx. 11 TWh), electricity imports are required

Battery storage for electrolysis

- power limitation, smoothing, increase in utilization, advantages for smaller electrolysis outputs
- more realistic H2 production of 5 and 8 TWh
- for high electrolysis outputs, a utilization of 40% cannot be achieved, rather < 27%

Reconversion of hydrogen

- signs of electrolysis power of around 6 GW
- complete re-conversion of electricity enables EMN to achieve approx. 80% self-sufficiency
- requires storage volume of around 100 GWh

Conclusion

Integrated Energy Systems Modeling Framework i7-AnyEnergy

Peter Bazan, Reinhard German

21. March 2024 20

Conclusion

- Cellular approach

- energy cells for electricity, heat, natural gas, hydrogen
- simple demand, generation and storage cells can also be used for cost flows and material flows

i7-AnyEnergy framework supports modelling of

- energy, material and cost flow cells
- hierarchical structures
- centralized and decentralized control algorithms
- integrated energy systems

Wide variety of applications

 e.g. Hydrogen Potential in EMN https://www.encn.de/nachricht/encn-stellt-wasserstoffstudie-fuer-die-metropolregion-vor

– i7-AnyEnergy framework is open source

- https://github.com/cs7org/i7-AnyEnergy
- MIT License
- runs with AnyLogic (https://www.anylogic.com)