

TEAM INTEGRIERTE MANAGEMENTSYSTEME HOCHSCHULE ZITTAU/GÖRLITZ

Regional Energy Market Model (REMM)

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald - jens.maiwald@hszg.de

_ F O R S C H E N _ O H N E _ G R E N Z E N _

ABM4Energy - Agent-Based Modeling for Energy Economics and Energy Policy, 22.03.2024

Motivation	Basics	Selected insights	Conclusion

1 Motivation

- 2 Basic principles of REMM
- 3 Selected insights of scenarios and results
- 4 Conclusion

FORSCHEN_OHNE_GRENZEN.

Motivation	Basics	Selected insights	Conclusion

1 Motivation

2 Basic principles of REMM

3 Selected insights of scenarios and results

4 Conclusion

FORSCHEN_OHNE_GRENZEN.

Motivation in a nutshell "The energy transition takes place on local levels." [Agora 2017]	montation	Dasies	beleeted molents	Conclusion
"The energy transition takes place on local levels." [Agora 2017]	Motivation in a nu	itshell		
		"The energy transition	n takes place on local levels."	[Agora 2017]

Selected insights

... but is there any additional value of regional (green) electricity marketing for energy economy and society?

Regional energy markets are not understood as self-sufficient isolated markets, but rather as integrated units in an interregional wholesale energy market.

Conclusion

FORSCHEN_OHNE_GRENZEN.

Motivation

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald: ABM4Energy "Regional Energy Market Model (REMM)"

Rasics

2 Basic principles of REMM

3 Selected insights of scenarios and results

4 Conclusion

TIMS

FORSCHEN_OHNE_GRENZEN.

It's all about entities and their behaviour

ABM

Portray an economic system in which orderly behaviour emerges as a result of interaction between heterogeneous agents, none of whom has any understanding of how the overall system works.

_ F O R S C H E N _ O H N E _ G R E N Z E N

Peer-to-peer trading in cellular structures

FORSCHEN_OHNE_GRENZEN

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald: ABM4Energy "Regional Energy Market Model (REMM)"

Cellular approach

Achieving equilibrium between electricity generation and consumption at the lowest possible level.

How to (re-)build consumer behaviour

Reality

- Electricity = homogeneous commodity (physically)
- Distinctions based on
 - $\Rightarrow \mathsf{Energy} \ \mathsf{source}$
 - \Rightarrow Place of generation

Preferences in REMM

- Environmental awareness $\rightarrow e \in [0, 1]$
- ▶ Regional awareness \rightarrow $I \in]0, 1]$
- Price/cost sensitivity $\rightarrow c \in]0,1]$

(Indicator: Income/Revenue)

Values for prices and preferences are used to calculate utility values and to create **individual agent behaviour**.

REMM can also display decision inertia

Preference status quo Lack of interest, delayed perception

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald: ABM4Energy "Regional Energy Market Model (REMM)"

Conclusion

Electricity products and price components lead into two-stage decision process

Stage I: energy source

$$p_{source} = \begin{cases} p_{base} & : \text{ Grey} \\ p_{base} + p_{green} & : \text{ Green} \end{cases}$$

FORSCHEN_OHNE_GRENZEN

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald: ABM4Energy "Regional Energy Market Model (REMM)"

Stage II: transmission distance

 $p_{reg} \Rightarrow$ regional purchase $p_{trans} \Rightarrow$ interregional purchase

Stage I: intrinsic value vs. (negative) value of (higher) costs

GREEN

Intrinsic utility value

$$u_{intr,i,t} = e_i \cdot \sqrt{p_{green,t}} \cdot c_i$$

Utility value of (higher) costs

 $u_{cost,i,t} = c_i^2 \cdot (p_{base} + p_{green,t})$ $u_{cost,i,t} = c_i^2 \cdot p_{base}$

Overall utility function ($U = u_{intr} - u_{cost}$)

$$U_{green,i,t} = e_i \cdot \sqrt{p_{green,t}} \cdot c_i - c_i^2 \cdot (p_{base} + p_{green,t})$$
 $U_{grey,i,t}$

FORSCHEN_OHNE_GRENZEN

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald: ABM4Energy "Regional Energy Market Model (REMM)"

GREY

 $u_{intr,i,t} = 0$

Stage II: intrinsic value vs. (negative) value of (higher) costs

REGIONAL **INTERREGIONAL**

Intrinsic utility value

$$u_{intr,i,t} = l_i^2 \cdot \sqrt{p_{reg}} \cdot c_i \qquad \qquad u_{intr,i,t} = 0$$

Utility value of (higher) costs

$$u_{cost,i,t} = c_i^2 \cdot p_{reg}$$
 $u_{cost,i,t} = c_i^2 \cdot p_{trans}$

Overall utility function ($U = u_{intr} - u_{cost}$)

 $U_{reg,i,t} = l_i^2 \cdot \sqrt{p_{reg}} \cdot c_i - c_i^2 \cdot p_{reg}$

FORSCHEN_OHNE_GRENZEN

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald: ABM4Energy "Regional Energy Market Model (REMM)"

$$U_{trans,i,t} = 0 - c_i^2 \cdot p_{trans}$$

Conclusion

1 Motivation

- 2 Basic principles of REMM
- 3 Selected insights of scenarios and results
- 4 Conclusion

FORSCHEN_OHNE_GRENZEN_

Simulated supply system

Characteristics

- Distribution grid level
- 15.400 household agents
- ▶ 1.600 TCS-companies
- (100 "bigger" companies)
- Database load profiles H0 & G0 (& measured)
- Database weather data TRY 2015

FORSCHEN_OHNE_GRENZEN

Demand for 'Green Regional' increases within flexible pricing mechanisms

<u>Scenario</u>

- Fix price vs. flex price
- ▶ PHHs, BSLs, BMLs
- Green and grey generation
- Share PV: 5 % | 15 %
- Share CHP: 5 % | 15 %
 ⇒ Biogas: 33 % | 50 %

 $\textbf{Demand} \neq \textbf{Consumption}$

... and also: decreasing demand for 'Grey Regional'

<u>Scenario</u>

- Fix price vs. flex price
- ▶ PHHs, BSLs (no BMLs)
- Green and grey generation
- Share PV: 5 % | 15 %
- Share CHP: 5 % | 15 %
 ⇒ Biogas: 33 % | 50 %

 $\textbf{Demand} \neq \textbf{Consumption}$

ΝЛ	ot	11/01	tio	
		ıva.		

Demand for regional products cannot be increased infinitely

<u>Scenario</u>

- Fix price vs. flex price
- ▶ PHHs, BSLs (no BMLs)
- Only green generation
- Solely PV scenario
 ⇒ 10 | 20 | 30 | 50 %

Residual sales volume = Sales Volume – Demand

Div	ersified generation scenaric	s cai	n partly create net-zero s	tuations at the market
$[P] = 1 \; MW$	(a) 10 % PV, 5 % CHP 6000 4500 3000 1500 0 -1500	[P] = 1 MW	(b) 20 % PV, 10 % CHP 6000 4500 3000 1500 0 -1500	 Scenario Fix price vs. flex price PHHs, BSLs (no BMLs) Only green generation
	2190 4380 6570 [t] = 1 h (c) 30 % PV, 15 % CHP		2190 4380 6570 $\label{eq:table} [t] = 1 \ h$ (d) 50 % PV, 25 % CHP	 ▶ PV & CHP scenario ⇒ PV: 10 20 30 50 % ⇒ CHP: 5 10 15 25 %
[P] = 1 MW	15000 10000 5000 0	[P] = 1 MW	15000 10000 5000 0	Residual sales volume = Sales Volume – Demand
FOF	2190 4380 6570 [t] = 1 h RSCHEN OHNE GRENZEN		2190 4380 6570 $[t] = 1 h$	Hochschule Zittau/Görlitz

Selected insights

Dipl.-Wirtsch.-Ing. (FH) Jens Maiwald: ABM4Energy "Regional Energy Market Model (REMM)"

Basics

Motivation

Conclusion

Motivation	Basics	Selected insights	Conclusion

- Conclusion

FORSCHEN_OHNE_GRENZEN

Motivation	Basics	Selected insights	Conclusion
Under the bottom line			

- REMM accurately maps markets for distribution grids
- ▶ Increasing shares of prosumers/RES reduce overall demand and thus the leverage for incentives
- Demand can not be flexibilized infinitely
- "Flex price" scenario impacts the demand in a positive manner but only in moderate expansion scenarios
- Evenly distributed generation shows more positive effects to work with financial incentives
- Discounts in the regional grid fee only appear to have an influence on the demand for "Grey Regional"

Financial incentives have the potential to reduce the effort required to achieve equilibrium between generation and consumption on a regional level. However, relying solely on financial incentives is insufficient for achieving this balance. Therefore, we emphasize the importance of exploring opportunities through the interplay of financial incentive mechanisms and technical possibilities.

FORSCHEN_OHNE_GRENZEN

"Essentially, all models are wrong, but some are useful." George Box (1919-2013)